主页 > 互联网 > 内容页

【YOLOv5】LabVIEW+YOLOv5快速实现实时物体识别(Object Detection)含源码

2023-03-13 16:10:30 来源:LabVIEW深度学习实战

前言

前面我们给大家介绍了基于LabVIEW+YOLOv3/YOLOv4的物体识别(对象检测),今天接着上次的内容再来看看YOLOv5。本次主要是和大家分享使用LabVIEW快速实现yolov5的物体识别, 本博客中使用的智能工具包可到主页置顶博客LabVIEW AI视觉工具包(非NI Vision)下载与安装教程中下载。若配置运行过程中遇到困难,欢迎大家评论区留言,博主将尽力解决。

一、关于YOLOv5

YOLOv5是在 COCO 数据集上预训练的一系列对象检测架构和模型。表现要优于谷歌开源的目标检测框架 EfficientDet,在检测精度和速度上相比yolov4都有较大的提高。目前YOLOv5官方代码中,最新版本是YOLOv5 v6.1,一共给出了5个版本的模型,分别是 YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLO5x 五个模型(如下图所示)。这些不同的变体模型使得YOLOv5能很好的在精度和速度中权衡,方便用户选择。其中五个模型性能依次增强。比如YOLOv5n模型参数量最小,速度最快,AP精度最低;YOLOv5x模型参数量最大,速度最慢,AP精度最高。本博客,我们以YOLOv5最新版本来介绍相关的部署开发。

YOLOv5相比于前面yolo模型的主要特点是:


(资料图)

1、小目标的检测精度上有明显的提高;

2、能自适应锚框计算

3、具有数据增强功能,随机缩放,裁剪,拼接等功能

4、灵活性极高、速度超快,模型超小、在模型的快速部署上具有极强优势

关于YOLOv5的网络结构解释网上有很多,这里就不再赘述了,大家可以看其他大神对于YOLOv5网络结构的解析。

二、YOLOv5模型的获取

为方便使用, 博主已经将yolov5模型转化为onnx格式,可在百度网盘下载**链接:https://pan.baidu.com/s/15dwoBM4W-5_nlRj4G9EhRg?pwd=yiku

提取码:yiku

1.下载源码

将Ultralytics开源的YOLOv5代码Clone或下载到本地,可以直接点击DownloadZIP进行下载,

下载地址:https://github.com/ultralytics/yolov5

2.安装模块

解压刚刚下载的zip文件,然后安装yolov5需要的模块,记住cmd的工作路径要在yolov5文件夹下:

打开cmd切换路径到yolov5文件夹下,并输入如下指令,安装yolov5需要的模块

pip install -r requirements.txt

3.下载预训练模型

打开cmd,进入python环境,使用如下指令下载预训练模型:

import torch​# Modelmodel = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom​

成功下载后如下图所示:

4.转换为onnx模型

在yolov5之前的yolov3和yolov4的官方代码都是基于darknet框架实现的,因此opencv的dnn模块做目标检测时,读取的是.cfg和.weight文件,非常方便。但是yolov5的官方代码是基于pytorch框架实现的。需要先把pytorch的训练模型.pt文件转换到.onnx文件,然后才能载入到opencv的dnn模块里。

将.pt文件转化为.onnx文件,主要是参考了nihate大佬的博客:https://blog.csdn.net/nihate/article/details/112731327

将export.py做如下修改,将def export_onnx()中的第二个try注释掉,即如下部分注释:

"""    try:        check_requirements(("onnx",))        import onnx​        LOGGER.info(f"{prefix} starting export with onnx {onnx.__version__}...")        f = file.with_suffix(".onnx")        print(f)​        torch.onnx.export(            model,            im,            f,            verbose=False,            opset_version=opset,            training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,            do_constant_folding=not train,            input_names=["images"],            output_names=["output"],            dynamic_axes={                "images": {                    0: "batch",                    2: "height",                    3: "width"},  # shape(1,3,640,640)                "output": {                    0: "batch",                    1: "anchors"}  # shape(1,25200,85)            } if dynamic else None)​        # Checks        model_onnx = onnx.load(f)  # load onnx model        onnx.checker.check_model(model_onnx)  # check onnx model​        # Metadata        d = {"stride": int(max(model.stride)), "names": model.names}        for k, v in d.items():            meta = model_onnx.metadata_props.add()            meta.key, meta.value = k, str(v)        onnx.save(model_onnx, f)"""

并新增一个函数def my_export_onnx():

def my_export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr("ONNX:")):    print("anchors:", model.yaml["anchors"])    wtxt = open("class.names", "w")    for name in model.names:        wtxt.write(name+"")    wtxt.close()    # YOLOv5 ONNX export    print(im.shape)    if not dynamic:        f = os.path.splitext(file)[0] + ".onnx"        torch.onnx.export(model, im, f, verbose=False, opset_version=12, input_names=["images"], output_names=["output"])    else:        f = os.path.splitext(file)[0] + "_dynamic.onnx"        torch.onnx.export(model, im, f, verbose=False, opset_version=12, input_names=["images"],                          output_names=["output"], dynamic_axes={"images": {0: "batch", 2: "height", 3: "width"},  # shape(1,3,640,640)                                        "output": {0: "batch", 1: "anchors"}  # shape(1,25200,85)                                        })    return f

在cmd中输入转onnx的命令(记得将export.py和pt模型放在同一路径下):

python export.py --weights yolov5s.pt --include onnx

如下图所示为转化成功界面

其中yolov5s可替换为yolov5myolov5myolov5lyolov5x

三、LabVIEW调用YOLOv5模型实现实时物体识别(yolov5_new_opencv.vi)

本例中使用LabvVIEW工具包中opencv的dnn模块readNetFromONNX()载入onnx模型,可选择使用cuda进行推理加速。

1.查看模型

我们可以使用netron 查看yolov5m.onnx的网络结构,浏览器中输入链接:https://netron.app/,点击Open Model,打开相应的网络模型文件即可。**

**

如下图所示是转换之后的yolov5m.onnx的属性:

2.参数及输出

blobFromImage参数:

size:640*640

Scale=1/255

Means=[0,0,0]

Net.forward()输出:

**单数组 25200*85 **

3.LabVIEW调用YOLOv5源码

如下图所示,调用摄像头实现实时物体识别

4.LabVIEW调用YOLOv5实时物体识别结果

本次我们是以yolov5m.onnx为例来测试识别结果和速度的;

**不使用GPU加速,仅在CPU模式下,实时检测推理用时在300ms/frame左右

使用GPU加速,实时检测推理用时为****30~40ms/frame,是cpu速度的十倍多**

如需源码,请关注微信公众号:VIRobotics。回复关键字“yolov5”。

**

审核编辑 黄宇

以上就是今天要给大家分享的内容,本次分享内容实验环境说明:操作系统为Windows10,python版本为3.6及以上,LabVIEW为2018及以上 64位版本,视觉工具包为博客开头提到的工具包。

如果文章对你有帮助,欢迎关注、点赞、收藏

审核编辑 黄宇

标签:

上一篇:
下一篇: