FAL组件和DFS文件系统的功能特点和使用方法-快播
FAL组件什么是FAL?
(资料图片仅供参考)
FAL (Flash Abstraction Layer)Flash 抽象层,是对 Flash 及基于 Flash 的分区进行管理、操作的抽象层,对上层统一了 Flash 及 分区操作的 API(框架图如下所示),并具有以下特性:
支持静态可配置的分区表,并可关联多个 Flash 设备;
分区表支持自动装载。避免在多固件项目,分区表被多次定义的问题;
代码精简,对操作系统无依赖,可运行于裸机平台,比如对资源有一定要求的 Bootloader;
统一的操作接口。保证了文件系统、OTA、NVM(例如:EasyFlash) 等对 Flash 有一定依赖的组件,底层 Flash 驱动的可重用性;
自带基于 Finsh/MSH 的测试命令,可以通过 Shell 按字节寻址的方式操作(读写擦) Flash 或分区,方便开发者进行调试、测试;
通过上图可以清晰明了看到,FAL抽象层向下可以通过Flash硬件进行统一管理,当然也可以使用SFUD框架(串行Flash通用驱动库,这部分RT-Thread官方已完成框架的移植同时提供多个应用历程),而对上也可以使用如DFS、NVM提供的Flash硬件统一访问接口,方便用户更加直接方便对底层flash硬件的访问操作。 注:非易失性存储器 (NVM):在芯片电源关闭期间保存存储在其中的数据。因此,它被用于没有磁盘的便携式设备中的内存,以及用于可移动存储卡等用途。主要类型有:非易失性半导体存储器 (Non-volatile semiconductor memory, NVSM) 将数据存储在浮栅存储单元中,每个单元都由一个浮栅(floating-gate) MOSFET组成。
关于存储,可以用一张图来解释:
FAL组件使用ENV配置FAL
在RT-Thread v4.1.0之前,FAL是作为软件包形式对用户开放使用的,而v4.1.0之后,FAL被RT-Thread官方重新定义为RTT组件的一部分,这样也能更加方便用户的开发。
下面正式讲解FAL组件的使用:
首先打开ENV工具,根据以下路径打开FAL使能RT-Thread Components->FAL: flash abstraction layer,由于后面会用到SFUD,所以这里把FAL uses SFUD drivers一并使能,并修改FAL设备名称为W25Q128.
完成上述操作后保存退出,并使用scons --target=mdk5重新生成MDK5文件并打开。
FAL组件FAL SFUD移植
示例选用W25Q128 spi flash作为测试模块,并且使用SFUD框架对spi flash设备进行管理和驱动。 由于目前RT-Thread的SFUD已经对W25Q128完成支持,根据官方的使用手册,仅需编写fal_cfg.h文件完成对FAL_FLASH_DEV_TABLE及FAL_PART_TABLE的定义即可。文件存放路径:. t-threadsplpc55sxxlpc55s69_nxp_evkoardportsfal_cfg.h
// fal.cfg.h/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-04-21 Wangyuqiang the first version */#ifndef _FAL_CFG_H_#define _FAL_CFG_H_#include #include #ifndef FAL_USING_NOR_FLASH_DEV_NAME#define NOR_FLASH_DEV_NAME "norflash0"#else#define NOR_FLASH_DEV_NAME FAL_USING_NOR_FLASH_DEV_NAME#endif/* Flash device Configuration */extern struct fal_flash_dev nor_flash0;/* flash device table */#define FAL_FLASH_DEV_TABLE { &nor_flash0, }/* Partition Configuration */#ifdef FAL_PART_HAS_TABLE_CFG/* partition table */#define FAL_PART_TABLE { {FAL_PART_MAGIC_WROD, "easyflash", NOR_FLASH_DEV_NAME, 0, 512 * 1024, 0}, {FAL_PART_MAGIC_WROD, "download", NOR_FLASH_DEV_NAME, 512 * 1024, 1024 * 1024, 0}, {FAL_PART_MAGIC_WROD, "wifi_image", NOR_FLASH_DEV_NAME, (512 + 1024) * 1024, 512 * 1024, 0}, {FAL_PART_MAGIC_WROD, "font", NOR_FLASH_DEV_NAME, (512 + 1024 + 512) * 1024, 7 * 1024 * 1024, 0}, {FAL_PART_MAGIC_WROD, "filesystem", NOR_FLASH_DEV_NAME, (512 + 1024 + 512 + 7 * 1024) * 1024, 7 * 1024 * 1024, 0}, }#endif /* FAL_PART_HAS_TABLE_CFG */#endif /* _FAL_CFG_H_ */
此时编译的话是找不到该头文件的,需要在Keil中设置:
在RTT FAL组件中的SFUD提供的fal_flash_dev对象默认的nor_flash0参数中,flash大小默认为8M,而W25Q128最大最16M,可以选择在. t-threadcomponentsfalsamplesportingfal_flash_sfud_port.c文件中对struct fal_flash_dev nor_flash0进行修改:
struct fal_flash_dev nor_flash0 ={ .name = FAL_USING_NOR_FLASH_DEV_NAME, .addr = 0, .len = 16 * 1024 * 1024, .blk_size = 4096, .ops = {init, read, write, erase}, .write_gran = 1};
当然也可以选择不进行修改,专家的原话是因为在调用初始化接口函数init后,会从flash设备读取正确的参数更新到nor_flash0表项中,在使用FAL组件前都需要调用FAL初始化函数fal_init,其内调用flash设备初始化函数fal_flash_init,最后会调用注册到fal_flash_dev设备表项中的初始化函数device_table->ops.init,所以nor_flash0表项参数会在FAL初始化时被更新。
同时需要开启SFUD框架支持,打开ENV工具,由于SFUD的使用需要指定一个spi设备,这里我选择使用最近移植好的软件spi,路径Hardware Drivers Config->On-chip Peripheral Drivers-> Enable soft SPI BUS->Enable soft SPI1 BUS (software simulation),这里的测试开发板是恩智浦LPC55S69-EVK,并且这款BSP的软件模拟SPI由我本人对接,关于这部分的软件SPI引脚定义可以选用默认即可,当然也可以使用自定义引脚,只要不与其他引脚产生冲突。
此时回到ENV主界面,进入RT-Thread Components->Device Drivers->Using Serial Flash Universal Driver,此时才可以看到SFUD选项出现(如果没有使能SPI则无法看到),使能后保持默认。
FAL组件FAL SFUD测试用例
为了验证W25Q128及软件模拟SPI在SFUD框架上是否能够成功运行,在. t-threadsplpc55sxxlpc55s69_nxp_evkoardports下新建一个soft_spi_flash_init.c文件,代码如下:
/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-04-21 Wangyuqiang the first version */#include #include "spi_flash.h"#include "spi_flash_sfud.h"#include "drv_soft_spi.h"#include "drv_pin.h"#include "rtconfig.h"#define cs_pin GET_PINS(1,9)static int rt_soft_spi_flash_init(void){int result = -1; result = rt_hw_softspi_device_attach("sspi1", "sspi10", cs_pin); rt_kprintf("value is %d",result);if(result == RT_EOK) { rt_kprintf("rt_hw_softspi_device_attach successful!"); }if (RT_NULL == rt_sfud_flash_probe("W25Q128", "sspi10")) {return -RT_ERROR; }return RT_EOK;}INIT_COMPONENT_EXPORT(rt_soft_spi_flash_init);
这里需要指定一个片选引脚,这里暂时使用了SSPI2的SCK引脚作为片选,需要注意不要同时打开SSPI1和SSPI2,后续我会专门上传一个通用GPIO作为片选引脚,避免产生问题。然后软件SPI设备的挂载使用的是SSPI1 bus及SSPI10 device,并且挂载flash设备到SSPI10。
在 . t-threadsplpc55sxxlpc55s69_nxp_evkoardports 下新建fal_sample.c文件,并编写测试代码:
//fal_sample.c/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-04-21 Wangyuqiang the first version */#include "rtthread.h"#include "rtdevice.h"#include "board.h"#include "fal.h"#define BUF_SIZE 1024static int fal_test(const char *partiton_name){int ret;int i, j, len; uint8_t buf[BUF_SIZE];const struct fal_flash_dev *flash_dev = RT_NULL;const struct fal_partition *partition = RT_NULL;if (!partiton_name) { rt_kprintf("Input parampartition name is null!");return -1; } partition = fal_partition_find(partiton_name);if (partition == RT_NULL) { rt_kprintf("Find partition (%s) failed!", partiton_name); ret = -1;return ret; } flash_dev = fal_flash_device_find(partition->flash_name);if (flash_dev == RT_NULL) { rt_kprintf("Find flash device (%s) failed!", partition->flash_name); ret = -1;return ret; } rt_kprintf("Flash device : %s ""Flash size : %dK ""Partition : %s ""Partition size: %dK", partition->flash_name, flash_dev->len/1024, partition->name, partition->len/1024);/* erase all partition */ ret = fal_partition_erase_all(partition);if (ret < 0) { rt_kprintf("Partition (%s) erase failed!", partition->name); ret = -1;return ret; } rt_kprintf("Erase (%s) partition finish!", partiton_name);/* read the specified partition and check data */for (i = 0; i < partition->len;) { rt_memset(buf, 0x00, BUF_SIZE);len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_read(partition, i, buf, len);if (ret < 0) { rt_kprintf("Partition (%s) read failed!", partition->name); ret = -1;return ret; }for(j = 0; j < len; j++) {if (buf[j] != 0xFF) { rt_kprintf("The erase operation did not really succeed!"); ret = -1;return ret; } } i += len; }/* write 0x00 to the specified partition */for (i = 0; i < partition->len;) { rt_memset(buf, 0x00, BUF_SIZE);len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_write(partition, i, buf, len);if (ret < 0) { rt_kprintf("Partition (%s) write failed!", partition->name); ret = -1;return ret; } i += len; } rt_kprintf("Write (%s) partition finish! Write size %d(%dK).", partiton_name, i, i/1024);/* read the specified partition and check data */for (i = 0; i < partition->len;) { rt_memset(buf, 0xFF, BUF_SIZE);len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_read(partition, i, buf, len);if (ret < 0) { rt_kprintf("Partition (%s) read failed!", partition->name); ret = -1;return ret; }for(j = 0; j < len; j++) {if (buf[j] != 0x00) { rt_kprintf("The write operation did not really succeed!"); ret = -1;return ret; } } i += len; } ret = 0;return ret;}static void fal_sample(void){/* 1- init */ fal_init();if (fal_test("font") == 0) { rt_kprintf("Fal partition (%s) test success!", "font"); }else { rt_kprintf("Fal partition (%s) test failed!", "font"); }if (fal_test("download") == 0) { rt_kprintf("Fal partition (%s) test success!", "download"); }else { rt_kprintf("Fal partition (%s) test failed!", "download"); }}MSH_CMD_EXPORT(fal_sample, fal sample);FAL组件测试结果 打开串口工具,输入命令:
msh/>easyflash_sample这里就可以进行编译下载了,成功后的截图如下:
DFS文件系统什么是DFS?
DFS 是 RT-Thread 提供的虚拟文件系统组件,全称为 Device File System,即设备虚拟文件系统,文件系统的名称使用类似 UNIX 文件、文件夹的风格,目录结构如下图所示:
在 RT-Thread DFS 中,文件系统有统一的根目录,使用 / 来表示。而在根目录下的 f1.bin 文件则使用 /f1.bin 来表示,2018 目录下的 f1.bin 目录则使用 /data/2018/f1.bin 来表示。即目录的分割符号是 /,这与 UNIX/Linux完全相同,与 Windows 则不相同(Windows 操作系统上使用 来作为目录的分割符)。
DFS文件系统 DFS架构
RT-Thread DFS 组件的主要功能特点有:
为应用程序提供统一的 POSIX 文件和目录操作接口:read、write、poll/select 等;
支持多种类型的文件系统,如 FatFS、RomFS、DevFS 等,并提供普通文件、设备文件、网络文件描述符的管理;
支持多种类型的存储设备,如 SD Card、SPI Flash、Nand Flash 等;
DFS 的层次架构主要分为 POSIX 接口层、虚拟文件系统层和设备抽象层;
DFS文件系统使用ENV配置DFS
打开ENV, 进入路径RT-Thread Components → DFS: device virtual file system,使能DFS: device virtual file system
由于DFS使用的是POSIX接口,而dfs_posix.h已经在新版本中移除了,如果想要兼容老版本,可在menuconfig中使能RT-Thread Components->Support legacy version for compatibility
由于elmfat文件系统默认最大扇区大小为512,但这里使用的flash模块W25Q128的Flash扇区大小为4096,为了将elmfat文件系统挂载到W25Q128上,Maximum sector size需要和W25Q128扇区大小保持一致,修改为4096,路径:RT-Thread Components → DFS: device virtual file system → Enable elm-chan fatfs / elm-chan"s FatFs, Generic FAT Filesystem Module
保存退出后使用scons --target=mdk5生成MDK5工程。
DFS文件系统DFS挂载到FAL分区测试
这里增加FAL flash抽象层,将elmfat文件系统挂载到W25Q128 flash设备的filesystem分区上,由于FAL管理的filesystem分区不是块设备,需要先使用FAL分区转BLK设备接口函数将filesystem分区转换为块设备,然后再将DFS elmfat文件系统挂载到filesystem块设备上。
接下来修改fal_sample.c文件,修改后代码:
/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2023-04-21 Wangyuqiang the first version */#include "rtthread.h"#include "rtdevice.h"#include "board.h"#include "fal.h"#include #define FS_PARTITION_NAME "filesystem"#define BUF_SIZE 1024static int fal_test(const char *partiton_name){int ret;int i, j, len;uint8_t buf[BUF_SIZE];const struct fal_flash_dev *flash_dev = RT_NULL;const struct fal_partition *partition = RT_NULL;if (!partiton_name) { rt_kprintf("Input param partition name is null!");return -1; } partition = fal_partition_find(partiton_name);if (partition == RT_NULL) { rt_kprintf("Find partition (%s) failed!", partiton_name); ret = -1;return ret; } flash_dev = fal_flash_device_find(partition->flash_name);if (flash_dev == RT_NULL) { rt_kprintf("Find flash device (%s) failed!", partition->flash_name); ret = -1;return ret; } rt_kprintf("Flash device : %s ""Flash size : %dK ""Partition : %s ""Partition size: %dK", partition->flash_name, flash_dev->len/1024, partition->name, partition->len/1024);/* erase all partition */ ret = fal_partition_erase_all(partition);if (ret < 0) { rt_kprintf("Partition (%s) erase failed!", partition->name); ret = -1;return ret; } rt_kprintf("Erase (%s) partition finish!", partiton_name);/* read the specified partition and check data */for (i = 0; i < partition->len;) { rt_memset(buf, 0x00, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_read(partition, i, buf, len);if (ret < 0) { rt_kprintf("Partition (%s) read failed!", partition->name); ret = -1;return ret; }for(j = 0; j < len; j++) {if (buf[j] != 0xFF) { rt_kprintf("The erase operation did not really succeed!"); ret = -1;return ret; } } i += len; }/* write 0x00 to the specified partition */for (i = 0; i < partition->len;) { rt_memset(buf, 0x00, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_write(partition, i, buf, len);if (ret < 0) { rt_kprintf("Partition (%s) write failed!", partition->name); ret = -1;return ret; } i += len; } rt_kprintf("Write (%s) partition finish! Write size %d(%dK).", partiton_name, i, i/1024);/* read the specified partition and check data */for (i = 0; i < partition->len;) { rt_memset(buf, 0xFF, BUF_SIZE); len = (partition->len - i) > BUF_SIZE ? BUF_SIZE : (partition->len - i); ret = fal_partition_read(partition, i, buf, len);if (ret < 0) { rt_kprintf("Partition (%s) read failed!", partition->name); ret = -1;return ret; }for(j = 0; j < len; j++) {if (buf[j] != 0x00) { rt_kprintf("The write operation did not really succeed!"); ret = -1;return ret; } } i += len; } ret = 0;return ret;}static void fal_sample(void){/* 1- init */ fal_init();if (fal_test("font") == 0) { rt_kprintf("Fal partition (%s) test success!", "font"); }else { rt_kprintf("Fal partition (%s) test failed!", "font"); }if (fal_test("download") == 0) { rt_kprintf("Fal partition (%s) test success!", "download"); }else { rt_kprintf("Fal partition (%s) test failed!", "download"); }}MSH_CMD_EXPORT(fal_sample, fal sample);static void fal_elmfat_sample(void){int fd, size;struct statfs elm_stat;struct fal_blk_device *blk_dev;char str[] = "elmfat mount to W25Q flash.", buf[80];/* fal init */ fal_init();/* create block device */ blk_dev = (struct fal_blk_device *)fal_blk_device_create(FS_PARTITION_NAME);if(blk_dev == RT_NULL) rt_kprintf("Can"t create a block device on "%s" partition.", FS_PARTITION_NAME);else rt_kprintf("Create a block device on the %s partition of flash successful.", FS_PARTITION_NAME);/* make a elmfat format filesystem */if(dfs_mkfs("elm", FS_PARTITION_NAME) == 0) rt_kprintf("make elmfat filesystem success.");/* mount elmfat file system to FS_PARTITION_NAME */if(dfs_mount(FS_PARTITION_NAME, "/", "elm", 0, 0) == 0) rt_kprintf("elmfat filesystem mount success.");/* Get elmfat file system statistics */if(statfs("/", &elm_stat) == 0) rt_kprintf("elmfat filesystem block size: %d, total blocks: %d, free blocks: %d.", elm_stat.f_bsize, elm_stat.f_blocks, elm_stat.f_bfree);if(mkdir("/user", 0x777) == 0) rt_kprintf("make a directory: "/user"."); rt_kprintf("Write string "%s" to /user/test.txt.", str);/* Open the file in create and read-write mode, create the file if it does not exist*/ fd = open("/user/test.txt", O_WRONLY | O_CREAT);if (fd >= 0) {if(write(fd, str, sizeof(str)) == sizeof(str)) rt_kprintf("Write data done."); close(fd); }/* Open file in read-only mode */ fd = open("/user/test.txt", O_RDONLY);if (fd >= 0) { size = read(fd, buf, sizeof(buf)); close(fd);if(size == sizeof(str)) rt_kprintf("Read data from file test.txt(size: %d): %s ", size, buf); }} MSH_CMD_EXPORT_ALIAS(fal_elmfat_sample, fal_elmfat,fal elmfat sample);DFS文件系统测试结果
打开串口工具,输入命令:
msh />fal_elmfat_sample
测试结果如下:结语
本期我们介绍了FAL组件和DFS文件系统的功能特点和使用方法,下期将给大家介绍使用FAL分区管理与easyflash变量管理的第二部分,如何将EasyFlsh移植到FAL分区。静待后续,下期见!
审核编辑:汤梓红
标签: