主页 > 互联网 > 内容页

【N32L40XCL-STB 开发板评测】安全加密算法评测

2023-08-10 17:12:09 来源:iotgeek

1 本章内容 本章主要以AES和SHA算法为例,介绍算法使用,同时对比基于硬件加速引擎和纯软件算法运算速度的差异。

2 测试环境 开发板:N32L40XCL-STB V1.0 开发环境:Keil5 RT-Thread版本:5.0.0


(相关资料图)

3 模块介绍 3.1 SAC模块简介 本MCU具有密码算法硬件加速引擎(SAC),支持多种国际算法及国家密码对称密码算法和杂凑密码算法加速,相较于纯软件算法而言能极大的提高加解密速度。

3.2 硬件支持的算法如下: 支持 DES对称算法  支持 DES和 3DES加解密运算  TDES支持 2KEY和 3KEY模式  支持 CBC和 ECB模式

支持 AES对称算法  支持 128bit/192bit/ 256bit密钥长度  支持 CBC、 ECB、 CTR模式

支持 SHA摘要算法  支持 SHA1/SHA224/SHA256

支持 MD5摘要算法  支持 MD5摘要算法

支持 国密算法  支持对称式国密 SM1、 SM4、 SM7算法以及 SM3杂凑算法 注: 国民技术SAC模块寄存器目前暂未开发,原厂仅提供基于加速引擎的静态库,通过查看API目前已开放下载最新版本静态库仅支持AES、DES、TDES、SHA1/224/256、SM3和随机数。 目前已开放下载的最新版本静态库还不支持SM1、SM4和SM7,另外SM1和SM7国密局仅提供IP授权,算法并不开源,暂无有效验证工具。 TinyCrypt组件为RT-Thead官方移植库,API接口简洁明了,使用非常方便。该库目前最新版本暂不支持DES算法,故本例程选择国民技术原厂和TinyCrypt都支持的AES和SHA为例对比硬件加速和纯软件算法的差异。

4 创建工程 由于官方只提供*.lib静态库,故采用ENV构建Keil工程项目。 在RT-Thread源码BSP目录中找到N32

拷贝n32l40xcl-stb,重命名为n32l40xcl-stb_algo_test 使用ENV工具,添加以下TinyCrypt组件,由于n32l40x芯片内存较小(20KB),而加解密运算需要较大的缓冲区来做测试,故需将无关的功能配置组件等全部关闭。如外设,仅保留GPIO和UART,其他系统外设全部关闭。

保存配置,适用pkgs和 scons命令构建工程。

添加algo_test.c

手动添加国民技术基于SAC模块的算法驱动库。

5 编写测试程序程序 HASH运算测试方法 1.记录系统tick值 2.读n32 flash 16Byte 3.计算HASH值 4.循环2-3步骤,直到128KB全部计算完成。 5.查询当前系统tick值,计算程序运行时间。

AES加解密测试方法 1.记录系统tick值 2.读n32 flash 16Byte 3.AES128_ECB 加密16Byte, ECB解密,解密后与明文比较 4.循环2-3步骤,直到128KB全部解密。 5.查询当前系统tick值,计算程序运行时间。

注:官方提供的AES API适用并不友好,参考TinyCrypt中AES API做了二次封装。

SHA1代码: /**

@brief SHA1 algorithm test code @paramnone @return none @note HASH operation test method

1. Record the system tick value
2. Read n32 flash R_FLASH_LEN Byte
3. Calculate the HASH value
4. Cycle steps 2-3 until the 128KB calculation is complete.
5. Query the current system tick value and calculate the program running time.

/ void sha1(void) { rt_tick_t tick ,tick_1,tick_2; tiny_sha1_context ctx; HASH_CTX n32sac_ctx; uint8_t output[20]; uint32_t pos = 0; uint32_t num = N32_FLASH_SIZE/R_FLASH_LEN ; rt_kprintf("nTinyCrypt SHA1 Testn"); tick_1 = rt_tick_get(); tiny_sha1_starts(&ctx ); pos = 0; for(int var = 0; var < num; ++var) { if (n32_flash_read(N32_FLASH_START_ADRESS+pos, databuf, R_FLASH_LEN) < 0) { rt_kprintf("read flash error !!! n"); return; } else { tiny_sha1_update(&ctx, databuf, R_FLASH_LEN); pos += R_FLASH_LEN ; } } tiny_sha1_finish(&ctx, output); tick_2 = rt_tick_get(); memset(&ctx, 0, sizeof(tiny_sha1_context)); tick = tick_2 - tick_1 ; rt_kprintf("start systick:%dms n", tick_1); rt_kprintf("finish systick:%dms n", tick_2); rt_kprintf("data len :%dByte,time:%dms n", N32_FLASH_SIZE,tick); rt_kprintf("SHA1 HASH:%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02Xn", output[0],output[1],output[2],output[3],output[4],output[5],output[6],output[7], output[8],output[9],output[10],output[11],output[12],output[13],output[14],output[15], output[16],output[17],output[18],output[19]); n32sac_ctx.hashAlg = HASH_ALG_SHA1; n32sac_ctx.sequence = HASH_SEQUENCE_FALSE; rt_kprintf("nN32L4_SAC SHA1 Testn"); tick_1 = rt_tick_get(); if (HASH_Init_OK != HASH_Init(&n32sac_ctx)) { rt_kprintf("N32L4_SAC HASH_Init failed.n"); return; } if (HASH_Start_OK != HASH_Start(&n32sac_ctx)) { rt_kprintf("N32L4_SAC HASH_Start failed.n"); return; } pos = 0; for (int var = 0; var < num; ++var) { if (n32_flash_read(N32_FLASH_START_ADRESS+pos, databuf, R_FLASH_LEN) < 0) { rt_kprintf("read flash error !!! n"); return; } else { if (HASH_Update_OK != HASH_Update(&n32sac_ctx, (uint8_t)databuf, R_FLASH_LEN)) { rt_kprintf("N32L4_SAC HASH_Update failed.n"); return; } else { pos += R_FLASH_LEN ; } } } if (HASH_Complete_OK != HASH_Complete(&n32sac_ctx, output)) { rt_kprintf("N32L4_SAC HASH_Complete failed.n"); return; } tick_2 = rt_tick_get(); memset(&n32sac_ctx, 0, sizeof(HASH_CTX)); tick = tick_2 - tick_1 ; rt_kprintf("start systick:%dms n", tick_1); rt_kprintf("finish systick:%dms n", tick_2); rt_kprintf("data len :%dByte,time:%dms n", N32_FLASH_SIZE,tick); rt_kprintf("SHA1 HASH:%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02Xn", output[0],output[1],output[2],output[3],output[4],output[5],output[6],output[7], output[8],output[9],output[10],output[11],output[12],output[13],output[14],output[15], output[16],output[17],output[18],output[19]); } AES代码: /**

@brief AES algorithm test code @param none @return none @note AES Encryption and decryption test method
1. Record the tick value of the system
2. Read n32 flash 16Byte
3. AES128_ECB encrypts 16Byte, decrypts ECB, and compares with plaintext after decryption
4. Repeat steps 2-3 until all 128KB is decrypted.
5. Query the tick value of the current system and calculate the program running time.

/ void aes(void) { rt_tick_t tick ,tick_1,tick_2; tiny_aes_context ctx; AES_PARM AES_Parm; uint8_t key[16]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; //uint8_t iv[16]={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; uint8_t plain[16]={0};// uint8_t cipher[16]={0};// uint8_t plainOut[16]={0};// #if DBG_AES uint32_t num = 4 ; #else uint32_t num = N32_FLASH_SIZE/16 ; #endif uint32_t pos = 0; rt_kprintf("nTinyCrypt AES128_ECB Testn"); tick_1 = rt_tick_get(); pos = 0; for (int var = 0; var < num; ++var) { if (n32_flash_read(N32_FLASH_START_ADRESS+pos, plain, 16) < 0) { rt_kprintf("read flash error !!! n"); return; } else { tiny_aes_setkey_enc(&ctx, key, 128); tiny_aes_crypt_ecb(&ctx,AES_ENCRYPT,plain, cipher); tiny_aes_setkey_dec(&ctx, key, 128); tiny_aes_crypt_ecb(&ctx,AES_DECRYPT,cipher, plainOut); #if DBG_AES rt_kprintf("key = "); DumpBytes(key, sizeof(key)); rt_kprintf("n"); rt_kprintf("plain = "); DumpBytes(plain, sizeof(plain)); rt_kprintf("n"); rt_kprintf("cipher = "); DumpBytes(cipher, sizeof(cipher)); rt_kprintf("n"); rt_kprintf("decrypt out = "); DumpBytes(plainOut, sizeof(plainOut)); rt_kprintf("n"); #endif if(memcmp(plain,plainOut,16)==0) { pos += 16 ; } else { rt_kprintf("tiny aes crypt error !!! n"); return; } } } if (memcmp(plain, plainOut, sizeof(plain)) != 0) { rt_kprintf("AES decrypt result do not equal plain data.n"); return; } tick_2 = rt_tick_get(); tick = tick_2 - tick_1 ; rt_kprintf("start systick:%dms n", tick_1); rt_kprintf("finish systick:%dms n", tick_2); rt_kprintf("data len :%dByte,time:%dms n", N32_FLASH_SIZE,tick); rt_kprintf("nN32L4_SAC AES128_ECB Testn"); tick_1 = rt_tick_get(); pos = 0; for (int var = 0; var < num; ++var) { if (n32_flash_read(N32_FLASH_START_ADRESS+pos, plain, 16) < 0) { rt_kprintf("read flash error !!! n"); return; } else { AES_SetKey_Enc(&AES_Parm, key, 128); AES_Crypt_ECB(&AES_Parm,AES_ENCRYPT,plain, cipher); AES_SetKey_Dec(&AES_Parm, key, 128); AES_Crypt_ECB(&AES_Parm,AES_DECRYPT,cipher, plainOut); #if DBG_AES rt_kprintf("key = "); DumpBytes(key, sizeof(key)); rt_kprintf("n"); rt_kprintf("plain = "); DumpBytes(plain, sizeof(plain)); rt_kprintf("n"); rt_kprintf("cipher = "); DumpBytes(cipher, sizeof(cipher)); rt_kprintf("n"); rt_kprintf("decrypt out = "); DumpBytes(plainOut, sizeof(plainOut)); rt_kprintf("n"); #endif if(memcmp(plain,plainOut,16)==0) { pos += 16 ; } else { rt_kprintf("tiny aes crypt error !!! n"); return; } } } tick_2 = rt_tick_get(); tick = tick_2 - tick_1 ; rt_kprintf("start systick:%dms n", tick_1); rt_kprintf("finish systick:%dms n", tick_2); rt_kprintf("data len :%dByte,time:%dms n", N32_FLASH_SIZE,tick); } AES 重新封装代码: /**

@brief AES key schedule (encryption) @param[in] parm pointer to AES context and the detail please refer to struct AES_PARM in n32l40x_aes.h @param[in] key encryption key @param[in] keysize must be 128, 192 or 256 @return none/ void AES_SetKey_Enc(AES_PARM parm, unsigned char key, int keysize) { parm->key = (uint32_t)key; parm->iv = NULL; // IV is not needed in ECB mode switch (keysize) { case 128: parm->keyWordLen = 4; break; case 192: parm->keyWordLen = 6; break; case 256: parm->keyWordLen = 8; break; default: return; } parm->Mode = AES_ECB; parm->En_De = AES_ENC; } /@brief AES key schedule (decryption) @param[in] parm pointer to AES context and the detail please refer to struct AES_PARM in n32l40x_aes.h @param[in] key encryption key @param[in] keysize must be 128, 192 or 256 @return none/ void AES_SetKey_Dec(AES_PARM parm, uint8_t key, uint32_t keysize) { parm->key = (uint32_t)key; parm->iv = NULL; // IV is not needed in ECB mode switch (keysize) { case 128: parm->keyWordLen = 4; break; case 192: parm->keyWordLen = 6; break; case 256: parm->keyWordLen = 8; break; default: return; } parm->Mode = AES_ECB; parm->En_De = AES_DEC; } /@brief AES-ECB block encryption/decryption @param[in] parm pointer to AES context and the detail please refer to struct AES_PARM in n32l40x_aes.h @param[in] mode AES_ENCRYPT or AES_DECRYPT @param[in] input 16-byte input block @param[out] output 16-byte output block @return none/ void AES_Crypt_ECB(AES_PARM parm, uint32_t mode, uint8_t input[16], uint8_t output[16]) { parm->inWordLen = 4; parm->in = (uint32_t)input; parm->out = (uint32_t)output; if (AES_Init_OK != AES_Init(parm)) { rt_kprintf("N32L4_SAC AES_Init failed.n"); return; } if (AES_Crypto_OK != AES_Crypto(parm)) { rt_kprintf("N32L4_SAC AES_Crypto failedn"); return; } }

6 测试数据

7 章节总结

从测试数据上对比,执行相同的密码运算基于硬件加速引擎速度远远大于纯软件算法。尤其是进行大量数据加解密运算时差异较大。

标签:

上一篇:N32L40XCL-STB开发板模块之UART评测
下一篇:最后一页